The Common Core English Language Arts Standards (CCELA)

CHAPTER 4, LESSON 5: ENERGY LEVELS, ELECTRONS, AND IONIC BONDING

Reading Standards for Literacy in Science and Technical Subjects 6-8

LITERACY.RST.6-8.3
Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.

LITERACY.RST.6-8.4
Determine the meaning of symbols, key terms and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics.

LITERACY.RST.6-8.7
Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).

Students observe and discuss animations modeling the ionic bonding between sodium and chlorine to make sodium chloride. Students also use a magnifier to observe salt crystals. Students use the Activity Sheet to read the questions and information and apply them to their observations and to the animations to learn the meaning of words related to electrons, attraction, energy level, and ionic bonding.

Writing Standards for Literacy in Science and Technical Subjects 6-8

LITERACY.WHST.6-8.1
Write arguments focused on discipline-specific content

 a. Introduce claim(s) about a topic or issue, acknowledge and distinguish the claim(s) from alternate or opposing claims, and organize the reasons and evidence logically.

 b. Support claim(s) with logical reasoning and relevant accurate data and evidence that demonstrate an understanding of the topic or text using credible sources.

 c. Use words, phrases, and clauses to create cohesion and clarify the relationship among claim(s), counterclaims, reasons, and evidence.
d. Establish and maintain a formal style.

e. Provide a concluding statement or section that follows from and supports the argument presented.

Students use the Activity Sheet to write answers to questions about their observations. Students also describe how the molecular model illustrations and animations from the lesson relate to their observations. Students make and support a claim that answers the Question to Investigate about why salt crystals are shaped like cubes.